Electronic Design Automation

Lecturer (assistant)
Number0000001855
Type
Duration5 SWS
TermWintersemester 2020/21
Language of instructionEnglish
Position within curriculaSee TUMonline

Dates

Admission information

Objectives

At the end of the module students are expected to be capable of employing algorithms for computer-aided design of (digital) integrated circuits, electronic systems, and other emerging platforms. These comprise: synthesis and optimization of digital circuits on logic level; simulation of digital circuits on logic level; mixed integer linear programming (MILP) modeling of EDA problems. With a good understanding of the inner workings of modern EDA tools, students can use and develop EDA tools more effectively and efficiently.

Description

In WS 2020/21 the course is planned to be presented online and asynchronous, i.e., download times of videos are at the discretion of participants. Logic Synthesis: Boolean functions, synthesis of 2-level combinational circuits, heuristic minimization of 2-level combinational circuits, synthesis of multi-level combinational circuits, ordered binary decision diagrams, synthesis of sequential circuits with finite state machines (FSM); Logic Simulation: event-driven simulation, modeling and simulation using VHDL; Mixed Integer Linear Programming (MILP) Modeling: properties of modeling method, mathematical modeling techniques (constraint linearization, OR-relation transformation, propositional logic modeling, absolute value modeling), modeling common EDA problems including grid routing, gridless routing, escape routing on printed circuit board (PCB), area routing on PCB, non-overlapping placement, area minimization, network flow, etc. Additional Topics: modeling applications in emerging technologies.

Prerequisites

Fundamentals of digital logic design; fundamental engineering mathematics;

Teaching and learning methods

Learning method: In addition to the individual methods of the students, consolidated knowledge is acquired by exemplary solutions to exercises and plentiful examples in the lectures. Teaching method: Students are instructed in a teacher-centered style during the lectures. The exercises are held in a teacher-centered way, but with plenty of potential for interaction. The lecturer also welcomes discussion. The following kinds of media are used: - Blackboard presentations - Comprehensive collection of formulas and algorithms - Catalog of exercises with solutions - Additional examples and demos are available online

Examination

Written examination (75 min.) (100%) with the following elements: - questions that cover the knowledge of the course content - hand calculations that cover the ability to solve problems 75 minutes, open book policy, non-programmable calculator permitted

Recommended literature

The following literature is recommended: - Algorithms for VLSI Design Automation; Sabih H. Gerez; John Wiley & Sons 1999 - Synthesis and Optimization of Digital Circuits; De Micheli, Giovanni; McGraw-Hill 1994 - VLSI Physical Design Automation; S. Sait, H. Youssef; McGraw-Hill 1995 - Applied Mathematical Programming; Bradley, Hax, and Magnanti; Addison-Wesley 1977

Links


All courses

Bachelorbereich: BSc-EI, MSE, BSEEIT

 

WS

SS

Diskrete Mathematik für Ingenieure (BSEI, EI00460)

Discrete Mathematics for Engineers (BSEEIT) (Schlichtmann) (Januar)

 

O

WS

SS

Entwurf digitaler Systeme mit VHDL u. System C (BSEI, EI0690) (Ecker)

WS 20/21 block course after lecture period

P

 

SS

Entwurfsverfahren für integrierte Schaltungen (MSE, EI43811) (Schlichtmann)

 

WS

 

Methoden der Unternehmensführung (BSEI, EI0481) (Weigel)

O

WS

 

Praktikum System- und Schaltungstechnik (BSEI, EI0664) (Schlichtmann et al.)

?

 

SS

Schaltungssimulation (BSEI, EI06691) (Gräb/Schlichtmann)

 

 

Masterbereich: MSc-EI, MSCE, ICD

 

SS

Advanced Topics in Communication Electronics (WS20/21: Willy Sansen) (MSCE, MSEI, EI79002)

P

WS

 

Aspects of Integrated Systems Technology & Design (MSCE, MSEI, EI5013) (Wurth)

fällt aus

WS

 

Electronic Design Automation (MSCE, MSEI, EI70610) (B. Li, Tseng)

O

WS

 

Design Methodology and Automation (ICD) (Schlichtmann) (Nov)

 

WS

SS

Machine Learning: Methods and Tools (MSCE, MSEI, EI71040) (Ecker)

O

WS

SS

SS

Mathematical Methods of Circuit Design (MSCE, MSEI, EI74042) (Gräb)

Simulation and Optimization of Analog Circuits (ICD) (Gräb) (Mai)

O+P

WS

 

Mixed Integer Programming and Graph Algorithms in Engineering Problems (MSCE, MSEI, EI71059) (Tseng)

O

WS

SS

Numerische Methoden der Elektrotechnik (MSEI, EI70440) (Diepold oder Schlichtmann)

O

WS

WS

SS

Seminar VLSI-Entwurfsverfahren (MSEI, EI7750) (Schlichtmann/Müller-Gritschneder)

Seminar on Topics in Electronic Design Automation (MSCE, EI77502) (Schlichtmann/Müller-Gritschneder)

O P?

O

WS

SS

Synthesis of Digital Systems (MSCE, MSEI, EI70640) (Müller-Gritschneder)

O

WS

 

Testing Digital Circuits (MSCE, MSEI, EI50141) (Otterstedt)

P

WS

 

Timing of Digital Circuits (MSCE, MSEI, EI70550) (B. Li, Zhang)

O

WS

SS

VHDL System Design Laboratory (MSCE, MSEI, EI7403) (Schlichtmann)

O

WS

SS

VLSI Design Laboratory (MSCE, MSEI, EI5043) (Schlichtmann)

fällt aus

 

The right-most column describes the planned type of lecture in the winter term 2020/21 - assuming that lecture halls are available: O=online, P=presence

 

MSE: Munich School of Engineering (TUM)
BSEEIT: Bachelor in Electrical Engineering and Information Technology (TUM-Asia)
ICD: Master of Science in Integrated Circuit Design (TUM-Asia)
MSCE: Master of Science in Communications Engineering (TUM)

MSEI: Master of Science in Elektrotechnik und Informationstechnik

BSEI: Bachelor of Science in Elektrotechnik und Informationstechnik

 

Please keep yourself updated at https://www.tum.de/die-tum/aktuelles/coronavirus/studium/ and www.ei.tum.de for updated information about teaching.