Emmy-Noether Group Theoretical Quantum Systems Design (TQSD)

Group leader and supervisor Dr. Janis Nötzel

The research group is working on the theoretical foundations of quantum system design.The group focuses on the application of analytical methods to questions motivated by practical system design and application. Interdisciplinary work, in particular cooperation and contact with research groups dealing with classical system design or experimental research on quantum systems, as well as with the TUM Entrepreneurship Center are promoted.The research agenda comprises the following four main themes:

  1. Simulations of early stage quantum networks. We have developed an emulator to facilitate the interaction of experimental and theoretical groups with the goal of aiding the design of novel quantum communication networks. 
  2. Quantum system design, in particular the interaction of the various resources that can be used for high data rates and reliable communication. For example, we have shown the impact of entanglement-assisted data transmission on the network layer in a hypothetical early-stage quantum communication network.
  3. Investigation of new potential use cases that can be made possible by adding quantum communication resources to current communication systems. Here we have shown the potential for dramatic improvements of data transmission capacity based on entanglement-assisted modulation in a hybrid classical-quantum communication system.
  4. Secret message transmission via quantum systems.


2021 Workshop on Entanglement Assisted Communication Networks

On March 09-12, 2021, the Workshop on Entanglement Assisted Classical Communication Networks (EACN) will take place at the TUM Institute for Communications Engineering. This event is a joint workshop of the Emmy Noether Group “Theoretical Quantum System Design” supported by the Deutsche Forschungsgemeinschaft (DFG) and the Institute for Communications Engineering supported by the German Federal Ministry of Education and Research (BMBF) with the project Q.Link.X.

Topics of interest:
Will quantum communication reshape classical network design? What will be the next technological
breakthrough in quantum communication? This interdisciplinary workshop focusses on entanglement as a resource assisting classical communication systems. We welcome participants from academic institutions, research labs and industry. Selected approaches to entanglement-assisted communication will be presented, along with established communication models in classical networking. To spark fruitful discussions, information regarding the progress in quantum hardware development will be provided.


We acknowledge funding by the DFG via grant NO 1129/2-1 and by the Bundesministerium für Bildung und Forschung via grant 16KIS1005 and thank the MCQST for supporting us.