Fun & Facts on the impact of power electronics

Martin Schulz (IFAG IPC IPB APS AE)
January 2018
Why Electric outperforms Bio

Germany alone has about 40 Million passenger cars doing 50 km daily in average.

Summed up:
2 Billion km/day
700 Billion km/year

The - renewable – energy [kWh] necessary could come from:
- 10 Million hectares of corn for Biomethane or
- 17 Million hectares of canola for Biodiesel or
- 19 Million hectares of corn for ethanol fuel

But only 140,000 hectares of solar panels

Total agricultural area in Germany: 17 Mio. hectares
19 Mio. hectares to create ethanol fuel
17 Mio. hectares to create biodiesel
10 Mio. hectares to create Biomethane

200km
Mechanical conversion vs. electronic conversion

› Growian 1983
 - 3MW, Leonard-Converter
 - $\eta \sim 80\%$
 - 600kW losses

› State of the art, 2018
 - 6MW, Power Electronics
 - $\eta > 95\%$
 - <300kW losses
Wind-driven mobility?

- 3 MW Windmill
- Typically 2000 full-power hours equivalent per year → 6 Million kWh/year
- Assuming 20 kWh/100 km → Energy to go 30,000,000 km
- Average use of fossil fuel in Germany 2015 was 7L/100 km and 120 gCO₂/km → 2,100,000 liters of gasoline saved
- 3000 tons of CO₂ saved in generation, ~0.5 kg/kWh
- 3600 tons of CO₂ saved in traffic
A side note...

An electric vehicle that needs 20kWh/100km consumes an equivalent of only 1.67L Diesel/100km

(1L Diesel ~12kWh)
Renewable hydrogen and the efficiency trap

Renewables → Electrolysis → H₂ → Battery electric vehicles

1 p.u.

Battery electric vehicles outperform H₂-fuel cells by factor 3, H₂-powered ICEs by factor 10

ICE* → <10 km
Fuel-cell → 36 km
EV charger → 100 km

* ICE = Internal Combustion Engine
Part of your life. Part of tomorrow.