Power Electronics

DC/DC Converter Fundamentals

Prof. Hans-Georg Herzog
Technische Universität München
Elektrische Energiewandlungstechnik
Outline

1. Overview on DC/DC Converter
2. One-Quadrant Converter
 • Buck Converter
 • Boost Converter
 • Buck-Boost Converter
 • Cuk Converter
3. Two-Quadrant Converter
4. Multi-Phase DC/DC Converter
Overview on DC/DC Converter

Fields of Application

• **Switched-Mode Power Supplies (≤ 300W)**
 – Supply of µC
 – PC Power Supply

• **Automotive (some kW)**
 – Coupling of Multi-Voltage On-Board Supply Networks
 – Connection of Energy Storage Devices, Thermo-Electric Generators, Solar Panels, ...

• **Controlled DC-Drives (several 10 kW)**
Fields of Application in Vehicles

- Internal Combustion Engine
- Clutch
- Electrical Machine
- Automatic Transmission
- Rear-axle Differential
- Inverter
- DC Converter
 - Supply System: 12 V
 - Energy Storage: 150 V..300 V
Buck Converter

One-Quadrant Converter

Fields of Application:

- Unidirectional Coupling of Two On-Board Networks
- Connecting Components with Lower Voltage Level to a Higher Voltage On-Board Network
Buck Converter – Principle Circuit

Network A (e.g. HV On-Board Network) → Buck Converter → Network B (e.g. LV On-Board Network)

Source: [1]

Power
Buck Converter – Switching States

Assumption:
\[V_O = \text{const.} \]
\[T_s = t_{on} + t_{off} \]

\[i_L(t) = I_{S,Bo} + \frac{V_d - V_0}{L} \cdot t \]
Buck Converter – Switching States

Assumption:
\[V_O = \text{const.} \]
\[T_s = t_{on} + t_{off} \]

\[i_L(t) = I_{S,U} + \left(-\frac{V_0}{L} \right) \cdot t \]

Source: [1]
Buck Converter – Switching States

Assumption:

\[V_0 = \text{const.} \]

\[T_s = t_{on} + t_{off} \]

Steady-State: Area A = Area B

\[(V_d - V_0) \cdot t_{on} = V_0 \cdot (T_s - t_{on}) \]

\[\frac{V_0}{V_d} = \frac{t_{on}}{T_s} = D \]
Buck Converter – Output Voltage

\[\Delta V_0 = \frac{\Delta Q_0}{C} = \frac{1}{C} \cdot \frac{1}{2} \cdot \frac{\Delta I_L}{2} \cdot \frac{T_s}{2} \]

\[\Delta I_L = \frac{V_0}{L} \cdot (1 - D) \cdot T_s \]

Source: [1]
Buck Converter – Simulation Results

\[V_d = 20 \text{ V} \]
\[D = 0.75 \]

\[f_s = 2 \text{ kHz} \]
\[f_s = 3 \text{ kHz} \]

Source: [1]
Boost Converter

One-Quadrant Converter

Fields of Application:

- Unidirectional Coupling of Two On-Board Networks
- Connecting Components with Higher Voltage Level to a Lower Voltage On-Board Network
Boost Converter – Principle Circuit

Network A (e.g. HV On-Board Network)

Boost Converter

Network B (e.g. LV On-Board Network)

Source: [1]
Boost Converter – Switching States

\[i_L(t) = I_{S,Bo} + \frac{V_d}{L} \cdot t \]
Boost Converter – Switching States

\[i_L(t) = I_{SL} + \frac{V_d - V_0}{L} \cdot t \]
Boost Converter – Switching States

Steady-State: \[V_d \cdot t_{on} + (V_d - V_0) \cdot t_{off} = 0 \]

\[\frac{V_0}{V_d} = \frac{T_s}{t_{off}} = \frac{1}{1 - D} \]
Boost Converter – Output Voltage

\[
\Delta V_0 = \frac{\Delta Q}{C} = \frac{I_0 \cdot D \cdot T_s}{C}
\]

\[
\Delta V_0 = \frac{V_0}{R} \cdot \frac{D \cdot T_s}{C}
\]

Source: [1]
Boost Converter – Simulation Results

\[V_d = 20 \text{ V} \]
\[D = 0.7 \]

\[f_s = 2 \text{ kHz} \quad f_s = 3 \text{ kHz} \]

Source: [1]
Buck-Boost Converter

One-Quadrant Converter

Fields of Application:

- Voltage Inversion
- Connecting Components to a Lower/Higher Voltage On-Board Network
Buck-Boost Converter – Principle Circuit

Network A (e.g. HV On-Board Network) → Buck-Boost Converter → Component B (e.g. Negative Voltage)

Source: [1]
Buck-Boost Converter – Switching States

\[i_L(t) = I_{S,Bo} + \frac{V_d}{L} \cdot t \]

Source: [1]
Buck-Boost Converter – Switching States

\[i_L(t) = I_{S,U_P} + \frac{(-V_0)}{L} \cdot t \]

Source: [1]
Buck-Boost Converter – Switching States

Steady-State: \[V_d \cdot D \cdot T_s + (-V_0) \cdot (1 - D) \cdot T_s = 0 \]

\[
\frac{V_0}{V_d} = \frac{D}{1 - D}
\]

Source: [1]
Buck-Boost Converter – Output Voltage

\[\Delta V_0 = \frac{\Delta Q}{C} = \frac{I_0 \cdot D \cdot T_s}{C} \]

\[\Delta V_0 = \frac{V_0}{R} \cdot \frac{D \cdot T_s}{C} \]
Buck-Boost Converter – Simulation Results

\[V_d = 20 \text{ V} \]
\[f_s = 3 \text{ kHz} \]

\[D = 0.35 \]
\[D = 0.65 \]

Potentialtrennung?
Cuk Converter – Switching States

Assumption:
\[v_{C1} = \text{const} \rightarrow C_1 \text{ big enough} \]
\[V_{C1} = V_d + V_O \]

Diode D conducting
- \(i_{L1} \) and \(i_{L2} \) flow through D
- \(i_{L1} \) charges \(C_1 \)
- \(i_{L2} \) delivers Output Current
- \(i_{L1} \) and \(i_{L2} \) decrease

Source: [1]
Cuk Converter – Switching States

Assumption:
\(v_{C1} = \text{const} \)
→ \(C_1 \) big enough
\(V_{C1} = V_d + V_O \)

Switch T conducting
- \(i_{L1} \) and \(i_{L2} \) flow through T
- \(C_1 \) delivers Energy to Output and \(L_2 \)
- Energy in \(L_1 \) rises
→ \(i_{L1} \) and \(i_{L2} \) increase

Source: [1]
Cuk Converter – Output Voltage

Assumption:

\(v_{C1} = \text{const} \)

\(\rightarrow \) \(C_1 \) big enough

\(V_{C1} = V_d + V_O \)

\[
V_d \cdot D \cdot T_s + (V_d - V_{C1})(1 - D) \cdot T_s = 0
\]

\[
V_{C1} = \frac{1}{1 - D} \cdot V_d
\]

\[
(V_{C1} - V_0) \cdot D \cdot T_s + (-V_0)(1 - D) \cdot T_s = 0
\]

\[
V_{C1} = \frac{1}{D} \cdot V_0
\]

\[
\frac{V_0}{V_d} = \frac{D}{1 - D}
\]

Source: [1]
Two-Quadrant Converters

Fields of Application:

- Bidirectional Coupling of Two On-Board Networks
- Connecting Components with Lower Voltage Level to a Higher Voltage On-Board Network
- Current Inversion
- Step Up-Step Down Converter
Two-Quadrant Converters – Principle Circuit

Step Down Mode

Network A (e.g. HV Supply) → Step Down/Step Up Converter → Network B (e.g. LV Supply)

Source: [2]
Two-Quadrant Converters – Principle Circuit

Step Up Mode

Network A
(e.g. HV Supply)

Step Down/Step Up
Converter

Network B
(e.g. LV Supply)

Source: [2]
Step Down/Step Up Converter – Simulation

\[V_Q = 100 \text{ V} \]
\[E_A = 50 \text{ V} \]
\[f_s = 2 \text{ kHz} \]

Source: [2]
Step Down/Step Up Converter – Simulation

\[V_Q = 100 \, \text{V} \]
\[E_A = 50 \, \text{V} \]
\[f_s = 2 \, \text{kHz} \]

Source: [2]
Limited at High Power because of

- Slow Switching of Large Semiconductor Devices
- Large Smoothing Inductances (due to High Current)
- High Ripple Current Stress in Smoothing Capacitor

Cost-Intensive Passive Components

→ „Silicon instead of Passives“
→ Multi-phase DC/DC Converter
Half-Bridge – Multi-Phase Approach
Multi-Phase Approach

Ripple-Current Superposition of Individual Phases
Multi-Phase Approach – Pros & Cons

Advantages:
+ Less Current per Phase
+ Higher Modulation Frequency
+ Higher Effective Modulation Frequency by Phase-Shift in PWM Triggering
→ Compact and Cheap Set-Up
+ Modular Design possible

Disadvantages:
– Risk of Ring Currents
– Asymmetrical Phase Currents

Balancing Alternatives:
 Series Resistors
 Central Control
 Master-Slave Approaches
 Magnetically Coupled Coils
 Fuzzy Logic
DC/DC Converter – Losses

Ohmic Losses:

\[P_{\Omega} = R \cdot I_{out}^2 \]

Switching Losses:

\[P_S = \frac{1}{2} \cdot V_{out} \cdot I_{out} \cdot (t_1 + t_2) \cdot f_S \]

On-State Power Losses Transistor:

\[P_{rdson} = R_{ds} \cdot I_{in}^2 \]

Gate-Triggering:

\[P_{gate} = Q_{gate} \cdot V_{gs} \cdot f_S \]

On-State Power Losses Diode:

\[P_d = V_d \cdot I_{out} + R_d \cdot I_{out}^2 \]

Reverse Recovery Diode:

\[P_{rr} = (I_{out} \cdot t_{rr} + Q_{rr}) \cdot V_{in} \cdot f_S \]

Total:

\[P_\Sigma = P_{\Omega} + P_S + P_{rdson} + P_{gate} + P_d + P_{rr} \]

Example: 2Q Converter
References

[1] N. Mohan, T. Undeland, W. Robbins,

[2] D. Schröder,