„Line Commutated Topologies“

Prof. Dr.-Ing. Ralph Kennel
(ralph.kennel@tum.de)
Technische Universität München
Electrical Drive Systems and Power Electronics
Arcisstraße 21
80333 München
Germany
M1 Rectifier
with ohmic-inductive load
M1 Rectifier
with ohmic-inductive load
M1 Rectifier
with ohmic-inductive load
and line side (leakage) inductance
M2 Rectifier
with ohmic-inductive load

(Transformer-Übersetzung $\hat{u}_T = U_N/U_{s1} = U_N/U_{s2} = 1$)
M2 Rectifier
with ohmic load

(Transformer-Übersetzung $\hat{u}_T = \frac{U_N}{U_{s1}} = \frac{U_N}{U_{s2}} = 1$)
M2 Rectifier
with inductive load
M2 Rectifier \rightarrow Graetz Bridge
M2 Rectifier → Graetz Bridge
2 x M3 Topology ➔
(3phase AC) Six Pulse Bridge (B6)
(3phase AC) Six Pulse Bridge (B6)

firing angle $\alpha = 0^\circ$

firing angle $\alpha = 60^\circ$
B6 Six Pulse Bridge with capacitive load

Attention!

2 voltage sources are working against each other

(3phase AC) Six Pulse Bridge (B6)