Carbon-based Materials as Key-Enabler for “More-than-Moore“ Devices

Franz Kreupl

Department of Hybrid Electronic Systems
Technische Universität München (TUM), Germany
Outline

Carbon FET Devices
- Carbon Nanotubes
- Challenges

Carbon Interconnects
- Thru Silicon Vias
- DRAM Capacitors
- Carbon-Silicon Schottky Diodes

Graphenic Carbon Membranes
- X-ray Transmission Windows
- Carbon-based Resistive Memories
- Photodetectors
- Carbon-based Spin-Filters
Computation Power

345.6 GFLOPS

368.2 GFLOPS

Hitachi CP-PACS/2048
best supercomputer in 1996
Moore's law rewritten

Why scaling makes sense

Energy E to change a logic level

$$E = CV^2$$

- Voltage
- Capacitance = dimension, scale

Few electron logic possible

Next level: interconnect reduction
Lower Capacitance per Function

Mark Bohr (Intel):
“……. We make sure we’re scaling the capacitance per transistor or capacitance per function. So you get that switch energy benefit.”

Interview with Mark Bohr from August 22, 2016 with Mark Lapedus
http://semiengineering.com/deeper-inside-intel/
Why scaling makes sense
Moore's law rewritten

Time delay τ to change a logic level:

$$\tau = \frac{C \cdot V}{I_{ON}}$$

Current drive of the switch

Device physics determines I_{on}

Geometry determines C
When scaling makes NO sense

Source: Kuhn, IEDM 2008

Intel 14 nm Trigate

Source: Dick James, 2015
When scaling makes NO sense

Increase of
- stray capacitance
- middle of line capacitance

Source: V Moroz, ISPD 2016
Comparing FinFet with Carbon Nanotube

Diameter of CNT

Source: Dick James, Chipworks, Gold Standard Simulations
Carbon Nanotube is still the best Semi material

- **Metallic S/D contacts**: 7 kOhm (Q. Cao et al., Science, 2015)
- **Gate–all-around demo’ed** (Franklin et al., IEDM 2012)
- **Dopant free** (Kreupl SSDM 2005)
- **High-k-compatible** (Kreupl SSDM 2005)
- **No dark-space effects** (Knoch, EDL, 2008, Skotnicki & Boeuf, VLSI 2010)
- **Scalability demo’ed 9 nm** (Franklin, NL. 2012, Kreupl, Nature 2012)
- **Very small short channel effects** (Franklin, Nano L. 2012)
- **saturation @ low V and 9 nm** (not in graphene or 2D) (Franklin, Nano L. 2012)
- **10x more energy efficient** than Si technology (Shulaker, Springer. 2016)

Kreupl, IFX 2003, US 7646045 B2

Great News – how to proceed?

- Please give instructions
 - how to place billions of nanotubes with
 - one type of chirality
 - equal length
 - on a substrate
 - well aligned at some nanometer pitch
 - with a throughput of 120 wafers per hour

- Solution: Just issue a purchase order for the new Applied Materials Nano-Wonder™ machine

 No - unfortunately – I am kidding
WireControl – a project sponsored by BMBF

Grow horizontally aligned CNTs on amorphous SiO2 on Si wafers would enable:

- platform for sensor application (do not need nm-scale)
- RF-Transistors
- CMOS successor
WireControl Goal

- Develop processes and methods to create substrates with regularly aligned fabric of carbon nanotubes

- Fabric can be used to make dies in conventional semiconductor fashion
First results: nm-sized grooves in amorphous SiO$_2$

- Depth: 0.4 nm – 2.5 nm
- Density: ~77 grooves/µm

(HES, unpublished)
Nanotube growth along nano-grooves
Carbon-based materials for interconnects

1 - 40 kΩ

6 - 40 kΩ

1 - 80 kΩ

Graphene

Single-walled nanotube (SWCNT)

Multi-walled nanotube (MWCNT)

\[
\frac{1}{R_{\Sigma}} = \sum_{i=1}^{n} \frac{1}{R_i}
\]
Nanotubes for vias and contact holes

2000 - 2005

Graphene multilayers for vias and contact holes

Highly conductive graphenic carbon on 8” wafer

one-step via fill and metallization layer

F. Kreupl, *MRS P.* 303, 1, (2011)
Through Silicon Via Fill

400 um deep, 1 um wide

CVD-C fills aspect ratios > 400: Via-first approach possible

F. Kreupl, *MRS P.* 303, 1, (2011)
Application: Trench Fill for the DRAM Technology

Aspect ratio of > 80: extremely difficult to fill

Application in a 30 Bill. $ market

Aichmayr et al., VLSI 2007
F. Kreupl, MRS P. 303, 1, (2011)

Qimonda DRAM in 2008 had “carbon inside”
Carbon / high-k Trench Capacitor

- compatibility with a range of high-k materials shown
- cost and complexity effective alternative metal electrode,
- match leakage, reliability and speed requirements

Aichmayr et al., VLSI 2007
Boeschke et al. IEEE EDL, 2009
Metal-Semiconductor Contacts

source drain contacts, contacts to a pn-diode

- Signal Detection
- High Speed Switching
- Mixer Application

- Schottky Diodes

- Circuit Protection
 - Clamping
 - Rectifying

F. Kreupl, *MRS P.* 303, 1, (2011)
ESD damage in metal-Si contacts

\[
\frac{T dS}{V dt} = \frac{P}{V} = jE = j^2 \rho
\]

- \(P\): power
- \(T\): temperature
- \(V\): volume
- \(dS/dt\): entropy prod. rate
- \(j\): current density
- \(E\): electrical field
- \(\rho\): electrical resistivity

Typical Electro-Static Discharge (ESD) pulse ~ 100ns
ESD damage in Infineon BAT 15 TiSi-Si-diodes

Infineon BAT15 dead after 2 pulses @ 3.5 MA/cm²

(Max Stelzer et al., submitted)
Both diodes were fabricated on the same Si vehicle (dopants etc)
~150 nm n- Si is very sensible to trace amounts of contamination
ESD improvement by carbon-Si contact

Tested with 100 ns pulses @ 3.5 MA/cm²

> 10^8 improvement

(Max Stelzer et al., submitted)
Comparison: TiSi-Si versus C-Si

TiSi & C-Si same $I(V)$

TiSi & C-Si same low barrier (0.45 eV)

C-Si gets better after 100 M pulses!

C is superior to TiSi

(Max Stelzer et al., submitted)
Ketek’s EDX sensor on Mars

KETEK’s Silicon Drift Detectors have arrived on the Red Planet.

Source: NASA
A problem: Beryllium window (Be)

- only 2 suppliers
- very expensive
 - ~ € 300
 - or 500000 €/g
- very toxic material
- toxic waste if broken

VITUS H30

40mm² SDD chip; 30mm² active area; multi-layer collimator; 8μm Be window

diamond, SiN, polymers etc have been tried
...but all need a support grid and/or additional layers
High Performance X-ray Transmission Windows Based on Graphenic Membranes

Sebastian Hübner et al., IEEE TNS 2015 10.1109/TNS.2015.2396116
Pressure stability tests

Sebastian Hübner et al., MRS Advances / March 2016

0.6 µm thickness will hold $\Delta p_{\text{max}} = 5$ bar

UTS = 7 GPa

Ultimate Tensile Strength
Pressure Cycle Stability

- Helium leak tight: $< 1 \times 10^{-10}$ mbar L/s
- Diameter: 7.2 mm
- Thickness: 650 nm
- High bending resilience

Maximum Stress:
- High
- Low

Graph:
- Δp (mbar)
- Cycle Number
- 0
- 500
- 1000
- 1500
- 2000
- 2500
- 3000
- 1 10 100 1k 10k 100k 1M
X-ray transmission evaluation

1 µm GC enables C, N, O and F detection

Sebastian Hübner et al., IEEE TNS 2015 10.1109/TNS.2015.2396116
Low X-ray Energy Window

- High transmission below 2 keV!
- High transmission for C, O and N detection
- Helium leak tight
- Fluorescent blind
EUV pellicle for future (!) 6.7 nm node

ASML: Full size pSi pellicle realized, 103x122 mm, 85% (single pass) transmission
Successful implementation of graphenic carbon transmission windows for EDX and XRF

<table>
<thead>
<tr>
<th>X-Ray Window Requirements</th>
<th>Beryllium</th>
<th>Graphenic Carbon</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Support Grid at 7 mm Opening Diameter</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>X-Ray Transmission</td>
<td>71 % @ 1.5 keV</td>
<td>85 % @ 1.5 keV</td>
</tr>
<tr>
<td>Pressure Stability > 2 bar</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Pressure Cycle Fatigue >20k cycles</td>
<td>>10M cycles</td>
<td></td>
</tr>
<tr>
<td>Helium Leak Rate <1 x10^-10 mbar L/s</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Light Tight</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Chemical Resistance</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Non-Toxic</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Availability/Supply</td>
<td>Limited</td>
<td>Unlimited</td>
</tr>
</tbody>
</table>

Huebner et al., MRS Advances 2016, 10.1557/adv.2016.194
Huebner et al., physica status solidi (b), 2015, 2564-2573
Hübner et al., IEEE TNS 2015
Summary

- Devices
 - Excellent: single-walled CNT FETs
 - How to realize products?

- Interconnects
 - Thru Silicon Vias
 - Capacitors (DRAM and passives)
 - Midgap gate material
 - Schottky-Diodes

- Sensors and Memories
 - X-ray windows
 - Carbon Memories
 - Spin filter
 - Photo-detectors

Questions and Comments?
Acknowledgement

PhD students & students:
- Stefan Kapser, Sebastian Hübner, Max Stelzer
- Mohanad Zaki, Matin Mohajerani, Lukas Holzbaur

- **Infineon**: Werner Simbürger, Josef Dietl
- **Ketek**: Natsuki Miyakawa, Andreas Pahlke, Reinhard Fojt
- **VDI/VDE**
- **BMBF**
- **Bavarian Ministry of Economic Affairs and Media, Energy and Technology**
Properties of Graphenic Carbon

<table>
<thead>
<tr>
<th>Properties</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>2.2 g/cm³</td>
</tr>
<tr>
<td>Resistivity</td>
<td>1 mΩ cm</td>
</tr>
<tr>
<td>Stress (on Si)</td>
<td>400–500 MPa</td>
</tr>
<tr>
<td>Young modulus</td>
<td>150 GPa</td>
</tr>
<tr>
<td>UTS</td>
<td>7 GPa</td>
</tr>
</tbody>
</table>

Carbon fiber (Toray T1000G)
(the strongest man-made fibres)
6.370 GPa fibre alone
- Carbon FET Devices
 - Nanotubes or Graphene & other 2D
 - Challenges
- Carbon Interconnects
 - DRAM Capacitors
 - Carbon-Silicon Schottky Diodes
 - Interconnects
- Graphenic Membranes
 - X-ray Transmission Windows
- Carbon-based Resistive Memories
- Photodetectors
- Carbon-based Spin-Filters