Design of Coarsely-Quantized Message Passing Decoders

Gerhard Kramer (TUM)

Joint work with Gottfried Lechner (UniSA) and Troels Pedersen (Aalborg)
Contributions by Emna Ben Yacoub (TUM)

Oberpfaffenhofen Workshop on High Throughput Coding
February 27, 2019
Binary Message Passing (BMP) for LDPC Codes

- Kou, Lin, Fossorier, LDPC codes based on finite geometries, IEEE Trans. IT, 2001
- Miladinovic, Fossorier, Improved bit-flipping decoding, IEEE Trans. IT, 2005
- Ardakani, Kschischang, Properties of binary message-passing, IEEE Trans. IT, 2005
- Sankaranarayanan et al., Failures of the Gallager B decoder, ISIT 2006
- Planjery, Declercq, Danjean, Vasic, Finite alphabet iterative decoders, 2013-
- Many other papers

Here Review and Expand on:

I. Low-Density Parity-Check (LDPC) Codes

- A binary linear block code is the set of binary (row) vectors, or codewords, \(\mathbf{c} \), satisfying, e.g.,

\[
\begin{bmatrix}
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
\mathbf{c} \\
\end{bmatrix} = 0
\]

where \(H \) is a \((n-k) \times n\) parity-check-matrix. Rate is \(R = 1 - \text{rank}(H)/n \) (example: \(R = 5/8 \)).

Tanner Graph Representation of Parity-Check Constraints

Variable Nodes

Edge Interleaver

Check Nodes

degree \(d_v = 2 \)

degree \(d_c = 4 \)
- Code is **low-density** if each row and column of H^T has “few” 1’s
- **Irregular** LDPC code: variable number of 1’s in every column/row
- Decoding: use message passing on the graph
- Messages may be cond. probabilities
 $$\Pr\left(c_1 = 0 \mid y \right)$$
 or log-likelihood ratios (L-values)
 $$L_1 = \log \frac{\Pr\left(c_1 = 0 \mid y \right)}{\Pr\left(c_1 = 1 \mid y \right)}$$
 or, in practice, quantized L-values
II. Iterative Decoding

LDPC code decoder iterations (turbo processing):

- a-priori information
- extrinsic information
- decoder computations performed here
III. Demodulation and Decoding

- L-values are real but must be quantized, see figure below
 1) Demodulator: can put out soft decisions ($>\log_2(M)$ bits/symbol) or hard decisions ($=\log_2(M)$ bits/symbol)
 2) Decoder iterations: B-bit message passing: binary message passing (BMP, $B=1$) ternary message passing (TMP, $B \approx 2$)

- Motivation: high-speed devices (>100 Gb/s) need simplifications
BMP/TMP: natural approaches are as follows:

1) Every edge bit represents a hard decision on an extrinsic L-value.
2) Variable nodes **convert** apriori bits to L-values, **add** L-values, and **make** binary (hard) or ternary decisions on output L-values.
3) Check nodes perform (extrinsic) XORs for **binary** message passing, and (extrinsic) XORs and erasures for **ternary** message passing.

Analysis: use **distribution evolution (DE)** to track extrinsic probabilities. **BMP**: track error probabilities; **TMP**: also track erasures.

\[
\begin{align*}
L_{ch} & \quad y \\
\epsilon_{av} & \quad \epsilon_{ac} \\
\epsilon_{ev} & \quad \epsilon_{ec} \\
\end{align*}
\]

N.B. \(\epsilon_{ec}(\epsilon_{ac})\) depends on \(d_c\).
Check node (degree d_c) and binary messages:

$$
\epsilon_{ec} = f_c(\epsilon_{ac}; d_c) = \frac{1 - (1 - 2\epsilon_{ac})^{d_c-1}}{2}
$$

Variable node (degree d_v): suppose $x_j = \pm 1$ (BPSK)

$$
\epsilon_{ev} = \sum_{j=1}^{d_v} \frac{1}{d_v} \Pr \left[\text{sgn}(L_{ev,j}) \neq x_j \right]
$$

$$
L_{ev,j} = L_{ch} + \sum_{i=1; i \neq j}^{d_v} L_{av,i}, \quad j = 1, 2, \ldots, d_v
$$

$$
L_{av,i} = a_i \log \frac{1 - \epsilon_{av}}{\epsilon_{av}}, \quad a_i = \pm 1, \text{ but what is } \epsilon_{av}?
$$

L_{ch} depends on channel quantization

Two design issues
Issue 1: Variable Node Processing

- Processing depends on ϵ_{av} which
 - Varies from iteration to iteration
 - Is *unknown*, unless the codes have infinite length in which case ϵ_{av} can be computed from EXIT chart (see below)

- Two other approaches:
 - Optimize “choice” of ϵ_{av} offline by numerical simulation
 - Estimate ϵ_{av} online based on the number of unsatisfied checks

- 1st approach is complex, but likely very good. This variant was used to design certain deployed LDPC codes

- 2nd approach is used here
Issue 2: Channel Outputs

- Consider an AWGN channel, $x_j=\pm 1$, noise variance σ_n^2
- Let $D_{ch}=|L_{ch}|$... called the reliability of the L-value
- For soft decisions:
 $$D_{ch} = \frac{2}{\sigma_n^2}$$
- For hard decisions get a binary symmetric channel (BSC) with crossover probability ε_{ch} ($0 \leq \varepsilon_{ch} \leq 0.5$)
 $$D_{ch} = \log \frac{1 - \varepsilon_{ch}}{\varepsilon_{ch}}$$, where $\varepsilon_{ch} = Q\left(1/\sigma_n\right)$
- For b-bit quantization: use mixture of b hard-decision channel reliabilities, e.g., 2-bit quantization with a binary symmetric quaternary output (BSQC) channel
Channel: $\sigma_n = 0.67$

- **Variable nodes** on the y-axis to the x-axis:
- **Check nodes** on the y-axis to the x-axis:

$$I_{ac} = 1 - h(\epsilon_{ac})$$
where $h(x)$ is the binary entropy function:

$$h(x) = -x \log_2 x - (1-x) \log_2 (1-x)$$

Example: $h(0.11) = 0.5$

Similar for I_{ec}, I_{av}, I_{ev}

Comments:
- BSC quantization same as Gallager B algorithm
- BSQC quantization thresholds at 0 and ±1.9
IV. Optimization: Irregular LDPC Codes

- Each node’s ϵ_{ev} depends on d_v: write as $\epsilon_{ev}(\epsilon_{av},d_v)$. Now use different degrees to shape avg. variable node curve:

$$
\epsilon_{ev}(\epsilon_{av}) = \sum_{i} \lambda_i \epsilon_{ev}(\epsilon_{av},i)
$$

with $\lambda_i=$fraction of edges connected to var. nodes of degree i

- Can similarly shape the check node function $\epsilon_{ec}(\epsilon_{ac})$

- Degree distribution $\{\lambda_i\}$ design: use EXIT chart
 - $\epsilon_{ev}(\epsilon_{av})$ curve should lie above $\epsilon_{ec}(\epsilon_{ac})$ curve for convergence (and $n=\infty$)
 - L-value messages: Matching EXIT curves maximizes rate.

- BMP: new issues vs. L-value messages
 - Stability (decoder convergence when ϵ_{av} or ϵ_{ac} are small)
 - Cycles related to “absorbing sets” cause decoder to get stuck

- Approach: build optimization & remedies into a linear program
Rate, Stability, Cycles

- **Design Rate:**
 \[R = 1 - \frac{1/d_c}{\sum_{i} \lambda_i / i} \]

- **Stability:** satisfied for binary message passing and hard or soft channel messages if and only if (try \(\lambda_2 = 1 \))
 \[(\lambda_2 + 2\varepsilon_{ch}\lambda_3)(d_c - 1) < 1 \]

- **Cycles:**
 - Structure on right causes decoding failure if all channel messages in error, and if all other incoming messages correct
 - Obvious idea: avoid cycles of degree 2 or 3 variable nodes
Result: a Tanner graph with no cycles having degree 2 and 3 variable nodes exists if and only if (try $\lambda_3 = 1$)

$$3\lambda_2 + 4\lambda_3 \leq \frac{6}{d_c}\left(1 - \frac{1}{(1 - R)N}\right) < \frac{6}{d_c}$$

Linear Program: $\lambda = \{\lambda_i\}$ is variable node degree distribution

$$\hat{\lambda}^* = \arg\max_\lambda R = \arg\max_\lambda \left(1 - \frac{1/d_c}{\sum_i \lambda_i/i}\right) = \arg\max_\lambda \sum_i \lambda_i/i$$

subject to [variable node EXIT curve above check node EXIT curve]

$$\sum_i \lambda_i = 1, \quad 0 \leq \lambda_i \leq 1$$

$$(\lambda_2 + 2\varepsilon_{ch}\lambda_3)(d_c - 1) < 1, \quad 3\lambda_2 + 4\lambda_3 < \frac{6}{d_c}$$
BMP Thresholds

Comments:
- x-axis is E_s/N_0
- hard decision (BSC) capacity ≈ 2dB below AWGN capacity at low rate
- gap to capacity decreases as rate increases, for hard decisions and BMP
- Conclusion: high rate is good for BMP

Binary message passing & variable node degree distribution optimized using linear program
Performance: Rate 1/2, BMP

Comments:
- x-axis is E_b/N_0
- PEG interleavers automatically avoid undesirable cycles
- $n = 10,000$
- 2-bit quant. gains
 ≈ 1 dB over Gallager B and loses ≈ 0.5 dB as compared to soft outputs

Hard-Decision Cap: 1.8 dB
Soft-Decision Cap: 0.2 dB

Optimized Codes
Performance: Rate 15/16, BMP

- **Hard-Decision Capacity**: 5.0 dB
- **Soft-decision Capacity**: 3.9 dB

Comments:
- x-axis is E_b/N_0
- interleaver taken from standard
- 2-bit quant. gains
 - ≈ 1 dB over Gallager B and loses ≈ 0.2 dB vs. soft outputs
- BMP is ≈ 1.5 dB from L-value
- message capacity
- longer & irregular codes get closer

regular LDPC code for optical
see ITU-T G.975.1 2004
Comments:
- Figure taken from Emna Ben Yacoub’s Master Thesis, Oct. 2018
- Curves show decoding thresholds with BMP and TMP for optimized protograph LDPC code ensembles
Fig. 2. FER versus E_b/N_0 for TMP and unquantized BP decoding for $R = 3/4$ (---), $R = 5/6$ (---) and $R = 7/8$ (---). We compare the TMP performance of optimized codes (---) to their AR4JA counterparts with unquantized BP (---) and TMP decoding (---).
For More Details:

See the Posters!
And the First Talk Tomorrow!