One and Two Bit Message Passing Decoding for SC-LDPC Codes and Higher-Order Modulation

Fabian Steiner, Emna ben Yacoub, Balazs Matuz, Gianluigi Liva, Alex Graell i Amat

Technical University of Munich, Germany
Department for Communications Engineering

OWHTC February 28th, 2019
Introduction

• **High throughput applications** (e.g., optical communications) require low-complexity decoders.

Introduction

• **High throughput applications** (e.g., optical communications) require low-complexity decoders.

• **Hard-decision FEC (HD-FEC)** experiences quite some interest again lately.
 - Turbo product codes, staircase codes, concatenated schemes with outer HD codes.
 - Why? It reduces the **internal decoder data flow**.

Introduction

• **High throughput applications** (e.g., optical communications) require low-complexity decoders.

• **Hard-decision FEC (HD-FEC)** experiences quite some interest again lately.
 - Turbo product codes, staircase codes, concatenated schemes with outer HD codes.
 - Why? It reduces the **internal decoder data flow**.

• Data flow within an LDPC decoder\(^1\):

\[
F_{\text{LDPC}} = \frac{2 \cdot n_c \cdot D \cdot q \cdot d_{\text{avg}}}{R_c}
\]

Introduction

• High throughput applications (e.g., optical communications) require low-complexity decoders.

• Hard-decision FEC (HD-FEC) experiences quite some interest again lately.
 – Turbo product codes, staircase codes, concatenated schemes with outer HD codes.
 – Why? It reduces the internal decoder data flow.

• Data flow within an LDPC decoder:\(^1\):

\[
F_{LDPC} = \frac{2 \cdot n_c \cdot D \cdot q \cdot d_{avg}}{R_c}
\]

• Well, but why shouldn’t we still exploit some of the soft-information?

One and Two Bit Message Passing
Binary Message Passing (BMP) (I)2

Binary Message Passing (BMP) (I)²

Variable node update

\[m_{V_i \rightarrow C_j}^{(\ell)} = \begin{cases} +1, & \text{if } \left(\sum_{j' \in N(C_j)} D^{(\ell)} \cdot m_{C_j' \rightarrow V_i}^{(\ell)} \right) + L_i > 0 \\ -1, & \text{if } \left(\sum_{j' \in N(C_j)} D^{(\ell)} \cdot m_{C_j' \rightarrow V_i}^{(\ell)} \right) + L_i < 0 \end{cases} \]

Binary Message Passing (BMP) \(^{(1)}\)^2

Check node update

\[
m_{C_j \rightarrow V_i}^{(\ell)} = \prod_{i' \in N(C_j)} m_{V_{i'} \rightarrow C_j}^{(\ell)} \quad \in \{-1, +1\}
\]

Binary Message Passing (BMP) (II)

- Extrinsic channel is a binary symmetric channel (BSC).
Binary Message Passing (BMP) (II)

• Extrinsic channel is a binary symmetric channel (BSC).
• Weighting factor $D^{(\ell)}$ for each iteration is calculated off-line via density evolution and stored.
Ternary Message Passing (TMP) (I)
Ternary Message Passing (TMP) (I)

Variable node update

\[
m_{V_i \rightarrow C_j}^{(\ell)} = \begin{cases}
+1, & \text{if } \left(\sum_{j' \in N(V_i) \setminus \{j\}} D^{(l)} \cdot m_{C_{j'} \rightarrow V_i}^{(\ell)} + L_i \right) > a \\
-1, & \text{if } \left(\sum_{j' \in N(V_i) \setminus \{j\}} D^{(l)} \cdot m_{C_{j'} \rightarrow V_i}^{(\ell)} + L_i \right) < -a \\
0, & \text{else.}
\end{cases}
\]
Ternary Message Passing (TMP) (I)

Check node update (same as BMP)

\[m^{(\ell)}_{C_j \rightarrow V_i} = \prod_{i' \in \mathcal{N}(C_j) \setminus \{i\}} m_{V_{i'} \rightarrow C_j} \]
Ternary Message Passing (TMP) (II)

• Region between $-\alpha$ and α is declared to be an erasure region (complete uncertainty).

• Extrinsic channel is a binary error and erasure channel (BEEC).
Ternary Message Passing (TMP) (II)

- Region between $-a$ and a is declared to be an erasure region (complete uncertainty).

\[x \in [-a, a] \]

- Extrinsic channel is a binary error and erasure channel (BEEC).
- Straightforward to use with punctured LDPC codes or for channels with erasures (strong fading).
Quaternary Message Passing (QMP) (I)

- TMP already requires two bits. Why not introduce another level?
- We devide the real line into four regions:

```
| -H | -L | +L | +H |
```

Extrinsic channel is a symmetric quaternary output channel.
Quaternary Message Passing (QMP) (I)

- TMP already requires two bits. Why not introduce another level?
- We divide the real line into four regions:

 \[x \]

 \[-a \quad 0 \quad a \]

 \[-H \quad -L \quad +L \quad +H \]

- Extrinsic channel is a symmetric quaternary output channel.
Quaternary Message Passing (QMP) (II)
Quaternary Message Passing (QMP) (II)

Variable node update

\[m^{(\ell)}_{V_i \rightarrow C_j} = \begin{cases}
-H, & \left(\sum_{j' \in \mathcal{N}(V_i) \setminus \{j\}} D^{(l)} \cdot m^{(\ell)}_{C_{j'}, \rightarrow V_i} + L_i \right) \leq -a \\
-L, & -a < \left(\sum_{j' \in \mathcal{N}(V_i) \setminus \{j\}} D^{(l)} \cdot m^{(\ell)}_{C_{j'}, \rightarrow V_i} + L_i \right) < 0 \\
+L, & 0 \leq \left(\sum_{j' \in \mathcal{N}(V_i) \setminus \{j\}} D^{(l)} \cdot m^{(\ell)}_{C_{j'}, \rightarrow V_i} + L_i \right) < a \\
+H, & \left(\sum_{j' \in \mathcal{N}(V_i) \setminus \{j\}} D^{(l)} \cdot m^{(\ell)}_{C_{j'}, \rightarrow V_i} + L_i \right) \geq a
\]
Quaternary Message Passing (QMP) (II)

Check node update (classical min-sum)

\[
m^{(\ell)}_{C_j \rightarrow V_i} = \min_{V_i' \in \mathcal{N}(C_j) \setminus \{i\}} |m^{(\ell-1)}_{V_i' \rightarrow C_j}| \times \prod_{V_i' \in \mathcal{N}(C_j) \setminus \{i\}} \text{sign} \left(m^{(\ell-1)}_{V_i' \rightarrow C_j} \right)
\]
Higher Order Modulation
System Model

- Additive white Gaussian noise channel with N_i iid. $\mathcal{N}(0, \sigma^2)$.

$$Y_i = X_i + N_i, \quad i = 1, \ldots, n.$$

- Discrete signaling with constellation \mathcal{X}: $M = 2^m$-ASK.

- Binary reflected Gray code (BRGC) labeling.
- Mapping of constellation point $x \in \mathcal{X}$ to its label via

$$b = (b_1 b_2 \ldots b_m) = \chi(x) \in \{0, 1\}^m.$$
Bit-Metric Decoding

- Bit-metric, soft-decision (SD) decoders:

\[l_j(y) = \log \frac{P_{Bj|Y}(0|y)}{P_{Bj|Y}(1|y)}, \quad j = 1, \ldots, m. \]
Bit-Metric Decoding

- Bit-metric, soft-decision (SD) decoders:

\[l_j(y) = \log \frac{P_{Bj|Y}(0|y)}{P_{Bj|Y}(1|y)}, \quad j = 1, \ldots, m. \]

- The reliability of each bit-level is different.
Bit-Metric Decoding

- Bit-metric, soft-decision (SD) decoders:

\[l_j(y) = \log \frac{P_{B_j|Y}(0|y)}{P_{B_j|Y}(1|y)}, \quad j = 1, \ldots, m. \]

- The reliability of each bit-level is different.
- The PDF of the soft-information is not symmetric, i.e.,

\[p_{L|B}(l|0) \neq p_{L|B}(-l|1). \]
Structured Ensembles: Protographs

- **Structured LDPC codes** (e.g., protograph-based, multi-edge type) are particularly suited for the optimization with different reliabilities.

\[
B = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 2 & 1 \end{pmatrix}
\]

Final parity-check matrix derived via (cyclic) lifting operation.
Structured Ensembles: Protographs

- **Structured LDPC codes** (e.g., protograph-based, multi-edge type) are particularly suited for the optimization with different reliabilities.

- Protograph-based LDPC codes: Defined via **small basematrix** $B \in \{0, 1, \ldots, S\}^{m_P \times n_P}$.

\[
B = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 2 & 1 \end{pmatrix}
\]
Structured Ensembles: Protographs

- **Structured LDPC codes** (e.g., protograph-based, multi-edge type) are particularly suited for the optimization with different reliabilities.
- **Protograph-based LDPC codes**: Defined via **small basematrix** \(B \in \{0, 1, \ldots, S\}^{m_P \times n_P} \).

\[
B = \begin{pmatrix}
2 & 1 & 1 \\
0 & 2 & 1
\end{pmatrix}
\]

- Final parity-check matrix derived via (cyclic) lifting operation.
Density evolution is simplified when the operations at VNs and CNs and the soft-information is symmetric.

Density Evolution for BMP/TMP/QMP (I)

• Density evolution is simplified when the operations at VNs and CNs and the soft-information is symmetric.
• For higher-order modulation and BMD, this does not hold in general.

Density Evolution for BMP/TMP/QMP (I)

- Density evolution is simplified when the operations at VNs and CNs and the soft-information is symmetric.
- For higher-order modulation and BMD, this does not hold in general.
- Use channel adapters:\(^3\)

\[
\tilde{L}_j = L_j \cdot (1 - 2B_j).
\]

Density Evolution for BMP/TMP/QMP (II)

Track the evolution of the following probabilities for all edges $[B]_{ij} \neq 0, i \in \{1, \ldots, m_P\}, j \in \{1, \ldots, n_P\}$.

- **BMP** to CN: $p(\ell-1)_{ij}$
 - VN to CN: $q(\ell-1)_{ij}$
- **TMP** to CN: $p(\ell-1)_{ij}$
 - VN to CN: $q(\ell-1)_{ij}$
- **QMP** to CN: $p(\ell-1)_{ij}$, $p(\ell-1)_{L_{ij}}$ (for QMP)
 - VN to CN: $q(\ell-1)_{ij}$, $q(\ell-1)_{L_{ij}}$, $p(\ell-1)_{L_{ij}}$ (for QMP)
Density Evolution for BMP/TMP/QMP (II)

Track the evolution of the following probabilities for all edges $[B]_{ij} \neq 0$, $i \in \{1, \ldots, m_P\}$, $j \in \{1, \ldots, n_P\}$.

- **BMP**
 - VN to CN: $p_{-1}^{(\ell)}(i, j)$
 - CN to VN: $q_{-1}^{(\ell)}(i, j)$
Density Evolution for BMP/TMP/QMP (II)

Track the evolution of the following probabilities for all edges
\[[B]_{ij} \neq 0, \ i \in \{1, \ldots, m_P\}, \ j \in \{1, \ldots, n_P\}. \]

- **BMP**
 - VN to CN: \(p_{-1}^{\ell}(i, j) \)
 - CN to VN: \(q_{-1}^{\ell}(i, j) \)
- **TMP**
 - VN to CN: \(p_{-1}^{\ell}(i, j), \ p_0^{\ell}(i, j) \)
 - CN to VN: \(q_{-1}^{\ell}(i, j), \ q_0^{\ell}(i, j) \)
Density Evolution for BMP/TMP/QMP (II)

Track the evolution of the following probabilities for all edges \([B]_{ij} \neq 0, i \in \{1, \ldots, m_P\}, j \in \{1, \ldots, n_P\}\).

- **BMP**
 - VN to CN: \(p_{-1}^{(\ell)}(i, j)\)
 - CN to VN: \(q_{-1}^{(\ell)}(i, j)\)

- **TMP**
 - VN to CN: \(p_{-1}^{(\ell)}(i, j), p_0^{(\ell)}(i, j)\)
 - CN to VN: \(q_{-1}^{(\ell)}(i, j), q_0^{(\ell)}(i, j)\)

- **QMP**
 - VN to CN: \(p_{-H}^{(\ell)}(i, j), p_{-L}^{(\ell)}(i, j), p_L^{(\ell)}(i, j)\)
 - CN to VN: \(q_{-H}^{(\ell)}(i, j), q_{-L}^{(\ell)}(i, j), p_L^{(\ell)}(i, j)\)
Input Parameters for DE (I)

- We face m different bit-channels $p_{L_i|B_i}, i = 1, \ldots, m$ with BMD.
Input Parameters for DE (I)

- We face m different bit-channels $p_{L_i|B_i}, i = 1, \ldots, m$ with BMD.
- Associate each protograph VN with a certain bit-channel via:

$$T : \mathcal{V} \rightarrow \{1, 2, \ldots, m\}.$$
Input Parameters for DE (I)

• We face \(m \) different bit-channels \(p_{L_i|B_i}, i = 1, \ldots, m \) with BMD.
• Associate each protograph VN with a certain bit-channel via:

\[
T : \mathcal{V} \rightarrow \{1, 2, \ldots, m\}.
\]

• Example: 8-ASK, \(m = 3 \) bit channels.
Input Parameters for DE (II)

• TMP error and erasure probabilities VN2CN update:

Input Parameters for DE (II)

- TMP error and erasure probabilities VN2CN update:

\[
p_0^{(\ell)}(i, j) = \Pr \left\{ -a \leq \tilde{L}_{\text{ch}, T(j)} + L_{\text{in}}^{(\ell)} \leq a \right\}
\]

\[
= \sum_z \Pr \left\{ L_{\text{in}}^{(\ell)} = z \right\} \int_{-a-z}^{a-z} p_{\tilde{L}_{T(j)}}(\ell) \, d\ell
\]

\[
p_{-1}^{(\ell)}(i, j) = \Pr \left\{ L_{\text{ch}} + L_{\text{in}}^{(\ell)} < -a \right\}
\]

\[
= \sum_z \Pr \left\{ L_{\text{in}}^{(\ell)} = z \right\} \int_{-\infty}^{-a-z} p_{\tilde{L}_{T(j)}}(\ell) \, d\ell
\]

- Full description of DE for BMP/TMP/QMP in papers\(^4\)\(^5\).

Obtaining the CDFs of the soft-information

We propose two simple approaches.

1. Monte Carlo based estimation of the CDF.

Exemplary calculation for TMP erasure region ($\mu_{\text{ch},j} = 2/\tilde{\sigma}^2_j$ and $\sigma^2_{\text{ch},j} = 4/\tilde{\sigma}^2_j$):

$$p_0(i,j) = Q\left(\frac{-a + \mu_{\text{ch},T}(j)}{\sigma_{\text{ch},T}(j)}\right) - Q\left(\frac{a + \mu_{\text{ch},T}(j)}{\sigma_{\text{ch},T}(j)}\right).$$
Obtaining the CDFs of the soft-information

We propose two simple approaches.

1. Monte Carlo based estimation of the CDF.

2. Surrogate approach: Find equivalent AWGN surrogate \(\tilde{Y}_j = \tilde{X}_j + \tilde{N}_j \) with \(\tilde{X}_j \in \{-1, +1\} \) and \(\tilde{N}_j \sim \mathcal{N}(0, \tilde{\sigma}_j^2) \) with

\[
\tilde{\sigma}_j^2 : H(\tilde{B}_j|\tilde{Y}) = H(B_j|Y), \quad j = 1, \ldots, m.
\]
Obtaining the CDFs of the soft-information

We propose two simple approaches.

1. **Monte Carlo** based estimation of the CDF.

2. **Surrogate approach**: Find equivalent AWGN surrogate $\tilde{Y}_j = \tilde{X}_j + \tilde{N}_j$ with $\tilde{X}_j \in \{-1, +1\}$ and $N_j \sim \mathcal{N}(0, \tilde{\sigma}_j^2)$ with

 $$\tilde{\sigma}_j^2 : H(\tilde{B}_j|\tilde{Y}) = H(B_j|Y), \quad j = 1, \ldots, m.$$

Exemplary calculation for TMP erasure region ($\mu_{\text{ch},j} = 2/\tilde{\sigma}_j^2$ and $\sigma_{\text{ch},j}^2 = 4/\tilde{\sigma}_j^2$):

$$p_0^{(0)}(i,j) = Q \left(\frac{-a + \mu_{\text{ch},T(j)}}{\sigma_{\text{ch},T(j)}} \right) - Q \left(\frac{a + \mu_{\text{ch},T(j)}}{\sigma_{\text{ch},T(j)}} \right).$$
CDF Plot: 4-ASK uniform
Numerical Results
Setup for the Numerical Examples

• We target a spectral efficiency of $\approx 1.5 \text{ bpcu}$.

• Code class: SC-LDPC codes with VN degree four.
 • Based on protographs: $[4 \ 4 \ 4]$, $[4 \ 4 \ 4 \ 4]$, $[4 \ 4 \ 4 \ 4 \ 4 \ 4]$.
 • Constructed via edge spreading, therefore memory 3.
 • Thresholds: Right unterminated and window decoding with $W = 15$.
 • Finite length: Terminated after $L = 50$ spatial positions.
Setup for the Numerical Examples

- We target a spectral efficiency of $\approx 1.5 \text{ bpcu}$.
- Code class: SC-LDPC codes with VN degree four.
 - Based on protographs: $[4 \ 4 \ 4]$, $[4 \ 4 \ 4 \ 4]$, $[4 \ 4 \ 4 \ 4 \ 4 \ 4]$.
 - Constructed via edge spreading, therefore memory 3.
 - Thresholds: Right unterminated and window decoding with $W = 15$.
 - Finite length: Terminated after $L = 50$ spatial positions.
Numerical Results: Asymptotics

Achievable rates (Unconstrained Shannon limit: 8.45 dB):

<table>
<thead>
<tr>
<th>Mode</th>
<th>$R_{BMD}^{-1}(1.5; P_X)$ [dB]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SD</td>
</tr>
<tr>
<td>4U-0.75</td>
<td>9.3084</td>
</tr>
<tr>
<td>8PS-0.67</td>
<td>8.5334</td>
</tr>
<tr>
<td>8PS-0.83</td>
<td>8.5606</td>
</tr>
</tbody>
</table>
Numerical Results: Asymptotics

Achievable rates (Unconstrained Shannon limit: 8.45 dB):

<table>
<thead>
<tr>
<th>Mode</th>
<th>$R_{BMD}^{-1}(1.5; P_X)$ [dB]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SD</td>
</tr>
<tr>
<td>4U-0.75</td>
<td>9.3084</td>
</tr>
<tr>
<td>8PS-0.67</td>
<td>8.5334</td>
</tr>
<tr>
<td>8PS-0.83</td>
<td>8.5606</td>
</tr>
</tbody>
</table>

Decoding thresholds:

<table>
<thead>
<tr>
<th>Mode</th>
<th>$\text{SNR}_{th}^{\text{full}}$</th>
<th>$\text{SNR}_{th}^{\text{BMP}}$</th>
<th>$\text{SNR}_{th}^{\text{TMP}}$</th>
<th>$\text{SNR}_{th}^{\text{QMP}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4U-0.75</td>
<td>9.41</td>
<td>10.89</td>
<td>10.11</td>
<td>10.00</td>
</tr>
<tr>
<td>8PS-0.67</td>
<td>8.65</td>
<td>10.81</td>
<td>9.68</td>
<td>9.50</td>
</tr>
<tr>
<td>8PS-0.83</td>
<td>8.67</td>
<td>10.06</td>
<td>9.33</td>
<td>9.23</td>
</tr>
</tbody>
</table>
Numerical Results: Finite Length 4-ASK uniform
Numerical Results: Finite Length 4-ASK uniform

![Graph showing FER vs. SNR for different decoding methods.](image)
Numerical Results: Finite Length 4-ASK uniform

![Graph showing FER vs SNR for different decoding methods: Full BP, BMP, TMP, QMP. The graph plots SNR in dB on the x-axis and FER on the y-axis, with distinct markers for each decoding method at various SNR values.]
Numerical Results: Finite Length 4-ASK uniform

![Graph showing FER vs SNR for different decoding methods]

- Full BP
- BMP
- TMP
- QMP

SNR [dB] vs FER with markers indicating 0.75 dB and 0.82 dB improvements.
Numerical Results: Finite Length 8-ASK PS

![Graph showing FER vs SNR for different decoding methods. The graph plots FER (false error rate) on a logarithmic scale against SNR (signal-to-noise ratio) in dB. The x-axis ranges from 8.5 to 11 dB, and the y-axis ranges from 10^{-6} to 10^0. The graph includes lines for Full BP, BMP, TMP, and QMP, with markers indicating specific performance points. At 9.5 dB, the Full BP curve shows a significantly lower FER compared to the other methods, with a gap of approximately 0.76 dB between Full BP and the BMP, and 0.77 dB between Full BP and the QMP.]
Conclusions

• TMP and QMP show remarkably good performance: \(\approx 1.5 \, \text{dB} \) from the soft AWGN Shannon limit at FER \(10^{-4} \).
Conclusions

• TMP and QMP show remarkably good performance: ≈ 1.5 dB from the soft AWGN Shannon limit at FER 10^{-4}.
• Hardware implementation: Is it feasible? What is the real gain?
Conclusions

• TMP and QMP show remarkably good performance: \(\approx 1.5 \text{ dB} \) from the soft AWGN Shannon limit at FER \(10^{-4} \).
• Hardware implementation: Is it feasible? What is the real gain?
• Error floor analysis is needed.
Conclusions

• TMP and QMP show remarkably good performance: \(\approx 1.5 \text{ dB} \) from the soft AWGN Shannon limit at FER \(10^{-4} \).
• Hardware implementation: Is it feasible? What is the real gain?
• Error floor analysis is needed.
• Future work: Tailored code design for window decoding (small \(W \)), QMP decoding and few iterations.
Conclusions

• TMP and QMP show remarkably good performance: $\approx 1.5 \text{ dB from the soft AWGN Shannon limit at FER } 10^{-4}$.
• Hardware implementation: Is it feasible? What is the real gain?
• Error floor analysis is needed.
• Future work: Tailored code design for window decoding (small W), QMP decoding and few iterations.

https://arxiv.org/abs/1902.10391

One and Two Bit Message Passing for SC-LDPC Codes with Higher-Order Modulation

Fabian Steiner, Student Member, IEEE, Emma Ben Yacoub, Balázs Mató, Member, IEEE,
Günter I. Liva, Senior Member, IEEE, Alexandre Graell i Amat, Senior Member, IEEE