Security in Future 5G Systems

Georg Sigl
Technical University of Munich
Faculty for Electrical and Computer Engineering
Institute for Security in Information Technology
Contents

- Applications for future 5G networks
- Security implications and research challenges
- Attacks on devices
Applications for future 5G networks

THE TACTILE INTERNET

Prof. Dr.-Ing. Thomas Wiegand, HHI

source: https://netzoekonom.de

Presentation of T. Wiegand at Fraunhofer Institute Director’s Meeting
October 2015 in Hamburg
Security implications

- **IoT** → Every Thing needs an identity
 → Every Thing needs integrity, authenticity, (confidentiality)
 → Secure storage of identities and keys

- **Low latency** → Cryptography with low latency

- **Low power** → Cryptography with short block length

- **Safety** → Integrity and Authenticity of all involved components
Security implications

- **IoT**
 - Every Thing needs an identity
 - Every Thing needs integrity, authenticity, (confidentiality)
 - Secure storage of identities and keys

- **Low latency**
 - Cryptography with low latency

- **Low power**
 - Cryptography with short block length

- **Safety**
 - Integrity and Authenticity of all involved components
PUFs for identification and authentication

„Unique“ Physical Property + Measurement Method = Authentication, Key Generation

Silicon + PUF Physical Unclonable Function
Components of a PUF Key Generator

PUF

Key Generation Module

Source Coding

Channel Coding

Optional Hashing

n-to-2 multiplexer

Counter

Counter

Syndrome Coding

Error Correction Code

Hash-function

Helper Data

h

h

>?

r

k

h

Components of a PUF Key Generator

- PUF
- Source Coding
- Channel Coding
- Optional Hashing
Ring oscillator frequencies depend on manufacturing variations
Two ROs are compared to obtain a response bit

SRAM PUF (Guajardo et al., 2007) *

Symmetric circuit balance influenced by manufacturing variations
SRAM cells show a random, but stable value after power-up

Components of a PUF Key Generator
State of the Art in error correction

All error correctors work on fixed block structure:
e.g. IBS (Yu and Devadas, 2010 *)

Goal: find one white and one black square in each block of four

Helper data store the indices of selected bits

Differential Sequence Coding *

- No fixed block borders
- Helper data store distance to next bit and an inversion indicator
- Larger blocks of unreliable bits can be skipped
- Very efficient error corrector scheme for high error rates

Security implications

- **IoT** → Every Thing needs an identity
 → Every Thing needs integrity, authenticity, (confidentiality)
 → Secure storage of identities and keys

- **Low latency** → Cryptography with low latency

- **Low power** → Cryptography with short block length

- **Safety** → Integrity and Authenticity of all involved components
Typical symmetric cypher

- Diffusion and non-linearity required
- Usually several rounds
- All rounds could be combined in one cycle
- Combinational path would be too long
- In AES we have a minimal latency of 10 clock cycles
- Implementations with 500 MHz to 2 GHz seem to be possible → 5 to 20ns latency added
- Low power implementations with ~10 MHz → 1μs latency
- Protected implementations need longer!
Possible solution: Output Feedback Mode

\[z_i = BA(z_{i-1}), \quad c_i = z_i \oplus m_i, \quad m_i = z_i \oplus c_i, \quad z_0 = IV \]

Sender: Encryption

Receiver: Decryption

Buffering of bits possible
Possible solution: Counter Mode

\[z_i = BA(\text{nonce} \ || \ ctr_i), \quad c_i = z_i \oplus m_i, \quad m_i = z_i \oplus c_i \]

IV = nonce := “number used once”

Sender: Encryption

Receiver: Decryption

Buffering of bits possible
Security implications

- **IoT**
 - Every Thing needs an identity
 - Every Thing needs integrity, authenticity, (confidentiality)
 - Secure storage of identities and keys

- **Low latency**
 - Cryptography with low latency

- **Low power**
 - Cryptography with short block length

- **Safety**
 - Integrity and Authenticity of all involved components
Block length versus power

- Power for sending a bit dominates whole power consumption
 Around a factor of 10 more power for sending than calculation
- The block length is the minimum amount of bits, which can be encrypted
- Problem: if we want to transmit only one bit of information, we have to send a complete block?
- Stream ciphers (like OFB and CTR mode) can encrypt any number of bits → they are better for low bit counts
- Next problem: Brute force attacks!
- Information should be 64 bit or more to have sufficient security against brute force
- Questions:
 - Are there similar requirements for error correction?
 - Can we combine crypto and error correction?