Hardware Reverse Engineering

Contact:

Johanna Baehr

Michaela Brunner

Alexander Hepp

Over the past years, the trend in hardware development has gone towards third party IP Cores and commercial off-the-shelf ICs, with more and more high-level design being outsourced, and fabrication often taking place in external foundries. This gives way to a number of security threats, such as insertion of Hardware Trojans, IP Theft or IP Counterfeitung through illegal reverse engineering. Reverse engineering can provide a convenient tool to facilitate identification of malicious code entities, by creating a better understanding of the unknown circuit, on the other hand it can also be used to identfiy possible insertion points. Furthemore, the illegal reverse engineering of IP causes a significant financial cost to the hardware industry. Particularly in the field of cryptology, reverse engineering can severely impact the security of encryption and decryption algorithms, by helping in the identification of  new attack vectors on cryptographic implementations. To protect the integrity of the design, hardware obfuscation, both on a physical and netlist level, is becoming more and more prevalent. Understanding the process behind reverse engineering can provide insights into future possibilities for obfuscation or other countermeasures.

Research Topics:

  • Functional high-level netlist reconstruction
  • FSM Reconstruction
  • Netlist Partitioning
  • Hardware Obfuscation
  • Hardware Trojan Identification
  • Hardware Trojan Design
  • Machine Learning 
  • Graph Analysis
  • Benchmark Creation

Publications

2021

  • Hepp, Alexander and Sigl, Georg: Tapeout of a RISC-V Crypto Chip with Hardware Trojans: A Case-Study on Trojan Design and Pre-Silicon Detectability. Proceedings of the 18th ACM International Conference on Computing Frontiers (CF '21), Association for Computing Machinery, 2021Virtual: Catania, Italy mehr…

2020

  • Baehr, Johanna; Bernardini, Alessandro; Sigl, Georg; Schlichtmann, Ulf: Machine learning and structural characteristics for reverse engineering. Integration 72, 2020, 1 - 12 mehr…
  • Brunner, M. and Gruber, M. and Tempelmeier, M. and Sigl, G.: Logic Locking Induced Fault Attacks. 2020 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2020Limassol, CYPRUS mehr…
  • Zhang, G. L. and Li, B. and Li, M. and Yu, B. and Pan, D. Z. and Brunner, M. and Sigl, G. and Schlichtmann, U.: TimingCamouflage+: Netlist Security Enhancement with Unconventional Timing. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systemsde IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems , 2020, 1-1 mehr…
  • Zhang, G. L. and Brunner, M. and Li, B. and Sigl, G.and Schlichtmann, U.: Timing Resilience for Efficient and Secure Circuits. 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC), 2020Beijing, China, 623-628 mehr…

2019

  • Baehr, Johanna; Bernardini, Alessandro; Sigl, Georg; Schlichtmann, Ulf: Machine Learning and Structural Characteristics for Reverse Engineering. 24th Asia and South Pacific Design Automation Conference Conference (ASPDAC’19), 2019Tokyo, Japan mehr…
  • Brunner, M. and Baehr, J. and Sigl, G.: Improving on State Register Identification in Sequential Hardware Reverse Engineering. 2019 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), 2019Washington, D.C., USA mehr…

2018

  • Werner, M.; Lippmann, B.; Baehr, J.; Gräb, H.: Reverse Engineering of Cryptographic Cores by Structural Interpretation Through Graph Analysis. 2018 IEEE 3rd International Verification and Security Workshop (IVSW), 2018Platja d’Aro, Costa Brava, Spain, 13-18 mehr…

Open Positions for Students

Bachelorarbeiten

Implementation of Logic Locking Schemes

Implementation of Hardware Trojans

Hardware Trojan Detection Methods

Masterarbeiten

Shining a Light onto Obfuscation

Flip-Flop Classification - in a New Light

Implementation of Logic Locking Schemes

Implementation of Hardware Trojans

Hardware Trojan Detection Methods

Interdisziplinäre Projekte

Hardware Trojan Detection Methods

Forschungspraxis (Research Internship)

Shining a Light onto Obfuscation

Flip-Flop Classification - in a New Light

Implementation of Logic Locking Schemes

Implementation of Hardware Trojans

Hardware Trojan Detection Methods

Studentische Hilfskräfte

Hardware Trojan Detection Methods